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SUMMARY 

The immiscible displacement problem in reservoir engineering can be formulated as a system of partial 
differential equations which includes an elliptic pressure-velocity equation and a degenerate parabolic 
saturation equation. We apply a sequential numerical scheme to this problem where time splitting is used to 
solve the saturation equation. In this procedure one approximates advection by a higher-order Godunov 
method and diffusion by a mixed finite element method. Numerical results for this scheme applied to gas-oil 
centrifuge experiments are given. 
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1. INTRODUCTION 

Immiscible displacement of one incompressible fluid by another can be described by a system of 
partial differential equations of the form 

with appropriate boundary conditions on p and s and initial conditions on s. We assume R E  R2. 
In these equations the unknowns are u = (u,  v ) ,  which is the total velocity, obtained by summing 
the individual fluid velocities; p ,  which is the 'global' pressure, which involves the fluid pressures 
and capillary pressure; and s, which is the saturation of the fluid of interest (e.g. oil, gas or water). 
In (l), & = A l  + A 2 ,  with Ai the mobility of fluid i ,  and A i =  K ( x ) k & ) / p i ,  where K is the absolute 
permeability of the porous media, kri is the relative permeability of fluid i and p i  is the viscosity of 
fluid i. Also y i  =pigVz, where pi is the density of fluid i and gVz is the gravitational force. In (3), 4 
is the porosity, - p c  is the capillary pressure and Ar(F ,  G)=f(s)u-(y,-yl)& withf(s)=A,/(A, 
+ A 2 )  and A=A,f:  We are assuming s=sl  and s1 +s, = 1 -sew, where s,, is the connate water 
saturation. We are also assuming that no source or sink terms (wells) are present. When wells are 
present, these are modelled as Dirac delta functions. For more details on these equations, see 
References 1 and 2. 

The system (1)-(3) does not lend itself to solution by analytic techniques, hence numerical 
approximation is necessary. There are several numerical difficulties which must be considered in 
these problems. First, when capillary pressure effects are ignored ( p c z O ) ,  (3) reduces to a first- 
order hyperbolic equation, and for certain initial and boundary conditions, shocks can develop in 
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the saturation solution. Even in the presence of capillary pressure, the saturation solution often 
develops sharp fronts. These must be approximated without extreme oscillations and numerical 
diffusion. As seen in (3 ) ,  the inclusion of capillary pressure gives rise to a second-order non-linear 
term which, for stability purposes, is best handled implicitly. Thus a non-linear system of 
equations must be solved at each time step, which can add considerably to the cost of the 
calculation. Another numerical difficulty is sensitivity to grid orientation, or the ‘grid orientation 
effect’. This is an undesirable trait exhibited by many schemes, whereby radically different results 
are obtained depending on the orientation of the grid with respect to the direction of flow. This 
effect was first observed in the simulation of immiscible displacement by Todd et d3  and a 
substantial literature now exists on the subject; see Reference 4 for further references. 

The numerical technique we use for solving (1)-(3) was developed with the above difficulties in 
mind. The method uses a sequential approach, which is outlined as follows. Let 0 Q t< t* ,< T. 
First, given S(x, t) zs(x,  t), a nine-point block-centred finite difference scheme is applied to (l), (2) 
to approximate total velocity and pressure, giving (V, V)=U=u(x, t). We then solve for 
saturation by time splitting; that is, ( 3 )  is split into an advection equation and a diffusion 
equation. Thus we solve numerically 

(4) 
q5(x)St+ F(x, 5, V),+ G(x, S, V ) ,  = 0, t< t Q t * , 

S(x, 0 =S(x, t) ,  
obtaining S(x, t * ) % S ( x ,  t*). Then we solve numerically 

(5 )  
f$(X)S? -V*(I (x ,  s*)Vp,(x, s*)) =o, t<t<t*,  

s*(x, t )  = q x ,  t * ) .  

The result of these steps is an approximation S(x, t * )  to s(x, t * ) .  We then return to (l), (2) and 
update pressure and velocity. 

An explicit, unsplit, higher-order Godunov scheme is used to solve (4). A complete description 
of this scheme is given in Reference 5. The main advantage of using a higher-order Godunov 
method on (4) is that sharp fronts can be approximated accurately with no loss of stability, and on 
coarser grids than many standard procedures can use. The unsplit nature of the scheme reduces 
sensitivity to grid orientation. Furthermore, by handling advection explicitly, we are left with a 
symmetric system of equations in the diffusion step. The major disadvantage of using an explicit 
procedure is that one must enforce a CFL time step constraint in the advection step. Thus, if 
diffusion and advection are approximated on the same time scale, this constraint could prove 
costly. However, we can avoid this difficblty by time splitting. Thus we can use different sized time 
steps to approximate (4) and (5); for more details on this idea, see Reference 6 and 7. In the 
solution of (5) we use a variant’ of the standard lowest-order mixed finite element m e t h ~ d . ~  This 
combination of a higher-order Godunov procedure and a mixed method (hence the name 
Godunov-mixed method) has been tested extensively and successfully for various One-6 and two- 
dimensional’ flow problems, and analysis, including error estimates, can be found in Reference 7. 
The numerical results in References 5 and 6 were from standard test problems in reservoir 
engineering, and they show that the scheme approximates sharp fronts accurately and is relatively 
insensitive to grid orientation. In this paper we will use the method to study a realistic problem in 
reservoir engineering arising from laboratory experiments. 

The rest of this paper is organized as follows. In the next section we discuss the two- 
dimensional numerical method outlined above for solving (1)-(3). In Section 3 we present 
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numerical results from the application of this algorithm to the simulation of centrifuge ex- 
periments. Here we compare our solution with one obtained from a laboratory experiment, and 
study the effects on the solution of variations in the core sample characteristics. 

2. NUMERICAL METHOD 

Before describing our algorithm we give some notation. Assume O= [O, L,] x [O,  L,]. Let N,, N, 
be positive integers and set Ax=L,fN,, Ay=L,/N,. Let xi+l ,2  = iAx, i = O ,  . . . , N,, with a 
similar definition for Y,+~,~, and partition !2 into grid blocks Bij=[xi-112, x i+ l jz ]  
x [ y j -  1,2, y j +  1,2]. Let (xi, y j )  be the midpoint of Bij. Also, for At > O  and N*At = T, let t"= nAt, 

n=O,  . . . , N*. Finally, for g=g(x,  t), denote g(xi, y j ,  t")  by glj. 
In (4), (5) let t=t" and t*=t"+l. Given S(x, t")%S(x, t"), we apply a block-centred nine-point 

difference operator to the solution of (1); (2). This method is designed to suppress grid orientation 
effects and is described in Reference 4. By a choice of a parameter it reduces to standard five-point 
finite differences. The net result of this step is a function U"=(U", V " )  which approximates the 
normal component of u" at the grid block boundaries. Thus we obtain U l +  l i z ,  j z  ul+ 1,2, and 

Once the velocity is updated, time splitting is used to obtain S"". Let AtA denote the advection 
Vl, j + 1 / 2 z u Y , j + 1 / 2 .  

time step and assume 

A t A  =( t"+ - t")/K" (6) 
for an integer K">,  1. Let AtD denote the diffusion time step, i.e. 

At D -  - t"+ - t" . (7) 
The first step in our time-splitting approach is to apply the higher-order Godunov method 

developed in Reference 5 to (4). This scheme consists of three steps. First, given midpoint values 
SYj, i =  1, . . . , N , ,  j =  1, . . . , N,, we construct a piecewise (possibly) discontinuous bilinear 
function by calculating 'limited' x, y and xy slopes in each grid block. Initially, S: may be 
determined by interpolation or projection of the initial condition into the space of piecewise 
constants. Next we integrate (4) over the space-time domains Bij  x [ t", t" + AtA], deriving 
expressions for the midpoint values at the next advection time level. Finally, approximations to 
the fluxes F and G on the lateral boundaries of these domains are calculated, and the midpoint 
values in the bilinear approximation are updated. If K " -  1 in (6), then this completes the 
advection step; otherwise, we repeat these three steps K "  times until the time interval [ t" ,  t""] is 
exhausted. In the discussion that follows we assume for ease of notation that K " =  1. 

The bilinear approximation S" can be written as 

S"lB,, = + (x  - xi)6,S;, + ( y  - y,)S,S; + (x  - Xi)(  y - yj)S,,S;, .  (8) 

Note that SYj represents the integral average (i.e. cell average) of S" over B,,, as well as the value at 
the midpoint of B,. The slopes S , S l j ,  S,SY, and S,,S;, are computed by a multistep slope-limiting 
procedure. We first interpolate the cell averages surrounding Bij  by a bicubic polynomial to 
obtain corner values which are accurate approximations to s:* 1,2,  j *  l , z .  These corner values are 
then modified so that they satisfy two conditions. First, each corner value must fall between the 
maximum and the minimum of the cell averages surrounding the corner, and secondly, the 
average of the corner values in any cell must equal the cell average. Once these conditions are 
satisfied, the slopes are calculated by differencing. This procedure is heuristic, but numerical 
testing5 indicates that it is close to the following constrained minimization problem. Consider one 
grid block, Bij, and let S: denote the 'unlimited' bilinear function on B i j  obtained from the 
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unmodified corner values. Note that, formally, S: is a second-order accurate approximation to s". 
Then we seek the bilinear function Sy which satisfies 

minimize I S :  - S ;  1' dxdy, 
j B , ,  

subject to the constraints 

@'+l/z, j*1/2G(Sl)l*1/2, j+1/2GPl*1/2, j*1/23 

( S  I )lj = (Su )Yj 9 

where 

a:+ l / z ,  j +  112 =min{sYj, Sl+ 1, j, Sl+ 1, j+  1, Sl, j +  11, 

By+ 112. j +  l i 2  =max{Slj, Sl+ 1, j, Sl+ 1, j+  1% Sl, j +  i 1. 
The next step in the scheme is to integrate (4) over Bij x [ t n ,  tnt'], giving the equation 

where 

Here we have assumed 4 is constant over Bij. If this is not the case, then (9) is obtained by 
applying the midpoint rule to the integral of 4ft over Bij. 

The numerical flux F::$, (similarly GY,:;/fl2) is determined by the following multistep 
procedure. First, left and right states, Sf::/:, j, and Sl:$, j, R, approximating the average 
saturation over the region LR = [ yj- yj+ l i2]  x [t", t""] as viewed from the left and the right 
of the interface, are calculated. These values are obtained by linearizing (4) in the normal flux 
component and integrating over the characteristic domain of dependence of LR as determined 
from this linearized equation. In short, characteristic tracing is used to predict the average value 
of s on LR. Once the left and right states are found, the flux is determined by solving a Riemann 
problem; that is, we solve a problem of the form 

and evaluate the flux at the value of 5 which moves with speed x/t =O. In general, the Riemann 
problem cannot be solved exactly and its solution must be approximated. In our method.we have 
approximated the Riemann problem solution by use of the 'Godunov flux' calculation, which 
reduces (13), (14) to an optimization problem. Again, for more details on these and other aspects 
of the flux calculation, see Reference 5 and the references therein. 
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The explicit nature of the higher-order Godunov scheme, and the use of discontinuous 
approximating spaces and Riemann problems, require the advection time step to satisfy a CFL 
constraint; i.e. 

In solving (9, we take as our initial condition the piecewise constant function s"" satisfying 
s"+ ( B , j  = gr l .  Thus we diffuse our advection solution before projecting into the space of 
piecewise bilinears. The method we employ is a variant of the lowest-order mixed finite element 
method, described below. 

Let 6, denote the partition 

o=x, / ,  < . . . <XN,+1/2  = L,,  

and define 6, similarly. Let Ii = ( xi- xi+ 1,2), let 
A ' _ l ( 6 , ) = { ~ ( x )  such that u l l i ~ 9 " ' } ,  

where 9"' denotes the set of polynomials of degree d r,  and let 

dtf:(6.J=%?'(o, L,)nd'_ (6,). 

Define A': (6,) and &:(6,) similarly and let V denote the space of vector-valued functions 
whose first component is in the tensor-product space &A(&,) @ A! (6,) and whose second 
component is in the space A!! (6,) 0 MA(6,). Let W = A!! (6,) 0 A!! (6,,). 

Recall that, in (9, 

Let 

i f c 1 =  -K(x)Vp,(x, S " + l ) .  (15) 

Multiplying both sides of (1 5) by K - (x)v, where v E V ,  integrating over R and integrating by 
parts, we obtain 

Jn K-'(x)Z"+' .vdxdy- pc(x, S"+')V.vdxdy= - p,v-q, b 6. (16) 

where (Zy+ l ,  Z;' I ) =  Z"' E V , Z"' ' z 2"' 

we define 

and S"+ E ,W, S"' ' z s"+ '. 
Next let Y"+'E V be an approximation to h(s"+l)z"+l. In particular, for ( $ y + ' ,  $;+')E'I"'+~, 

(+1)~:;/2, j = K , + : / Z ,  j(Z1 ) ; , + : / 2 ,  j ,  (17) 

where h;::/2, j=h((S;:l +S:::, j ) / 2 ) .  We define (t,b2);,;i l i z  similarly. Then, applying backward 
differencing in time in (5 ) ,  multiplying by w E W and integrating, we have that 

Thus our numerical method for solving (5) is given by (16) and (18). 
Setting the second component of v to zero in (16), applying the trapezoidal rule of integration in 

x and the midpoint rule in y to the integral of the first component of Zn", and applying the 
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midpoint rule to the integral involving p , ,  we find that 

Applying the reverse integration rules to the integral of the second component of Z"" in (16), we 
obtain a similar expression for (Z2)y,j=11,2. Combining (18), (17) and (19), we obtain 

We now apply Newton's method to (20). 

in the following respect. In the standard mixed method, z would be defined by 
The variation of the mixed method described above is superior to the standard mixed method 

z = K (x) h(s)Vp, (x, s). 

Thus the analogue of (16) would require multiplication by h-  (s), which, in many cases of interest 
in immiscible displacement, is very large or even undefined. By defining z as in (1 5),  we avoid this 
difficulty and still allow for the use of harmonic averaging of the permeability in (19). Harmonic 
averaging, which involves averaging K - '  rather than K ,  has become the standard technique for 
handling discontinuities in permeability from one grid block to the next. 

3. APPLICATIONS 

The scheme described above has been applied to the simulation of gas-oil centrifuge experiments. 
In these experiments a core sample saturated with oil and connate water is placed in a container 
of gas, which is connected to a motor. The motor rotates the container, causing gas to invade the 
core sample and force out oil. One purpose of these experiments is to calculate relative 
permeability and capillary pressure curves (see e.g. References 10 and 11). Once these functions 
are defined, numerical simulation can be used to predict flow behaviour in the core sample. This 
problem is a good test for a numerical scheme. Porosity and permeability variations, capillary 
pressure effects, gravitational (centrifugal) effects, relative permeability and connate water must 
all be considered. 

The particular scenarios we want to study are based on an actual laboratory experiment. The 
data were provided by J. Killough. In this experiment the core was 6-41 cm long and connected to 
a motor by an arm 13 cm in length. The relative permeability of oil, as determined from the 
laboratory data, was found to be 

k,, = C(0.756 - sg)/0.756]4'612578, 

pFeas = 0.27701 [s,/( 1 - s,, - s,)] 1.70407 + 0.34639, 

(21) 

(22) 

k,, = s," , (23) 

and the measured capillary pressure curve was found to satisfy, in psi, 

where sg is the saturation of gas. The relative permeability of gas was assumed to satisfy 

The rest of the core parameters, as determined from the experiment, are given in Table I. 
In the numerical simulations we made the following assumptions. At the inflow boundary, 

pressure was assumed to be atmospheric and gas saturation was assumed equal to 1 -sew. At the 
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Table I 

Poi1 Pgas Poi1 Pgas 4 SCW 0 K 

26.36 CP 0.0114 CP 0.844 g ~ m - ~  0.00129 g ~ m - ~  0.2274 19.17% 3500 rpm 144 mD 
~ 

outflow boundary, p = pat,,, + 6-41gpBas and no flow of gas was assumed; no flow boundaries for 
pressure and saturation were assumed on the sides of the core. The gravitational force g=w2r/gc, 
where w is the number of rotations per minute, r is the distance from the centre of the apparatus 
and gc  is a gravitational constant. In these runs we assumed w increased linearly in time from 
start-up and reached its maximum after 1.5 min. 

In Figure 1 we compare the average oil saturation curve generated by our numerical scheme 
with the solution obtained in the laboratory. In the text below, this numerical solution will be 
referred to as the case 1 solution. As indicated in the figure, good agreement between the 
numerical and laboratory solutions is seen. This result serves as a validation of our numerical 
scheme, as well as validating the measured characteristics of the core sample. In our simulation we 
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Laboratory solutlon 

7.5 15.0 22.5 b.0 

Figure 1. Numerical versus laboratory solution 
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used 40 grid blocks in the x-direction and three in the y-direction, and 1500 diffusion time steps 
were taken to simulate 28.78 min of the experiment. Our time-stepping strategy was extremely 
conservative. We took small time steps for advection and diffusion early in the simulation, and 
allowed the diffusion time step to grow slowly as the simulation proceeded. 

The core sample in the laboratory experiment described above had fairly homogeneous 
characteristics. Hence the experiment was essentially a one-dimensional flood. This may not be 
the case in general. Still, there is some debate about whether two-dimensional effects are 
important in centrifuge simulations. In the runs described below we attempted to address this 
issue. 

We first varied the permeability ( K ) ,  leaving all other core characteristics unchanged. Two 
permeability fields were generated by a code written by D. Moissis.'* This code assumes a 
statistical distribution of the permeabilities and allows for variations in correlation length and 
standard deviation. In case 2 the permeability field varied between 119 and 167 mD, and in case 3 
between 57 and 290 mD. In both cases the mean permeability was 144 mD, as in the original data. 
In neither case did we see significant differences in the average oil saturation curves as compared 
to the homogeneous solution; in Figure 2 we compare the case 1 solution with the solution 

Average oil saturation vs. time 
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Figure 2. Case 1 versus case 3 
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obtained in case 3. This result is not surprising; it is commonly believed that centrifugal effects 
tend to override permeability effects. 

Next we study the effects on the solution of both porosity and permeability variations. We 
considered an imaginary core sample with streaks of higher-porosity, lower-permeability rock 
interspersed with rock of lower porosity and higher permeability; see Figure 3. This situation is an 
idealization of a core with layers of chert or shale interspersed with layers of sandstone. We ran 
two cases, making the following assumptions. In case 4 we assumed the porosity in the shale 
layers was 0.4 and the permeability was 001 mD. In the sandstone layers the porosity was 017  
and the permeability was 192 mD. In case 5 we assumed the porosity in the shale layers was 0.6 
and the permeability was 0.001 mD, while in the sandstone layers the porosity was 01032, and the 
permeability was 192 mD. Note that in both of these cases the integral average of the porosity was 
0.2274 and of the permeability 144 mD, as in case 1. In Figure 4 we compare the case 1 solution 
with the solutions of cases 4 and 5, and see that, as we vary the porosity and the permeability, 
different average oil saturation curves are obtained. In particuiar, oil is more reluctant to leave 
the core under the assumptions of cases 4 and 5 than of case 1. Moreover, the case 5 solution 
shows slower oil flow out of the core than the case 4 solution. These results agrees with intuition, 
but they also show that certain two-dimensional phenomena may be important. 

In the case 4 and 5 simulations we assumed that the capillary pressure varied as a function of 
space and saturation. In particular, we assumed that the Leverett j-functions for the various core 
samples were equal, and determined a capillary pressure curve from this relationship. This 
assumption, suggested to us by J. Killough, is supported by heuristic evidence, which indicates 
that while measured capillary pressure curves may vary from core to core, the Leverettj-function 
remains relatively ~ o n s t a n t . ' ~  The Leverett j-function is given by 

where a is a proportionality constant. Thus we determined the capillary pressure for each core by 
the equation 

where pFeas is given by (22) and Kmeas and 
In cases 4 and 5 we also assumed s,, was constant throughout the core. Since this assumption is 

probably not realistic, we ran two cases based on the data in case 4, varying the connate water 
saturation as a function of space. First, in case 6, we assumed no connate water existed in the 

are the constants K and $ given in Table I. 

shaded regions correspond to 
low permeability and high porosity zones 

Figure 3. Permeability and porosity variations 
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Figure 4. Case 1 versus case 4 versus case 5 

sandstone layers and s,, = 0.435 in the shale layers. Thus the average connate water saturation 
over the core was still 0.1917. We allowed p c  to vary with permeability, porosity and connate 
water saturation through the relationships given in (22) and (25). As we can see in Figure 5, little if 
any effect was seen on the solution, as compared to the case 4 solution. Next we reversed the 
situation, allowing all the connate water to be in the sandstone layers. Again, little difference is 
observed from the case 4 solution; see Figure 6. 

In cases 4-7 a 40 x 19 grid was employed, and in Figure 3 we used for comparison a case 1 
solution generated on a 40 x 20 grid, which agrees with the case 1 solution on the 40 x 3 grid. 

Remark I 
In our simulations we did not allow the relative permeability to vary explicitly as a function of 

space, which may be physically unrealistic. If future numerical testing indicates that this is an 
important assumption, it will be addressed in a separate paper. 
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Remark 2 

The computer runs described above were performed on CRAY X-MP computers. The majority 
of the code is vectorized, and for the finer grid simulations took 0 2 - 0 . 3  s per time step, with the 
majority of the time spent in solving the non-linear system of equations given by (20). Our future 
research will include developing methods for improving efficiency in this piece of the calculation. 
We will be particularly interested in domain decomposition methods for solving (5). 

4. CONCLUSIONS 

In conclusion, we have developed a vectorized, two-dimensional code for modelling two-phase 
flow with gravity and capillary pressure. Results from centrifuge studies indicate that the code is 
accurate and can be used to validate laboratory models. These and earlier numerical tests indicate 
that the method successfully overcomes many of the numerical difficulties which plague standard 
simulators. 
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